CDF Physics

Ben Kilminster Fermilab DOE Annual Science & Review July 12-14, 2010

The CDF Collaboration as of Today

Why, in April 2010, did 538 authors continue on CDF?

- Many fundamental questions of particle physics can be answered by CDF
 - Are there new particles & forces beyond the SM?
 - Is there a Supersymmetry? Extra dimensions?
 - Can we produce and study dark matter?
 - Can rare decays bring new physics to view ?
 - Are there differences between matter and antimatter?
 - New sources of CP violation ? CPT violation ?
 - Does SM describe electroweak / strong physics at high energies ?
 - Can we measure all SM backgrounds to new physics?
 - Is the most massive SM particle, the top quark, special?
 - Do high order theoretical predictions work ?
 - Do observed quark bound states match theory ?
 - What is the true structure of the proton ?
 - How is electroweak symmetry broken?
 - Is there a Higgs boson or something else?

Peer review agrees we are asking the right questions

CDF on track to surpass 2009 banner year!

PhD's Awarded

- 41 awarded since January 2009
- 250 awarded for work on Run II data
- 514 CDF students received PhD's thus far

Current CDF physics program

Today, we will show results after Lepton Photon August 2009

- > 75 new results ready for ICHEP 2010!
 - Tevatron has delivered 9 fb⁻¹
 - 6 fb⁻¹ of analyzed data collected up to March 2010 shown today

CDF's new results

Outline

- Can't cover all 75 new results
- Will cover some new results focusing on the following important physics questions
 - Can we measure all SM backgrounds to new physics ?
 - Are there new sources of CP violation?
 - Is the top quark special?
 - Are there new particles/interactions beyond the SM?
 - Is there a Higgs boson?

Can we measure all SM processes which are backgrounds to new physics?

- New physics signatures tend to have some combination of missing transverse energy (MET), multiple leptons, jets, photons
- Can search for excess of events above SM predictions
 - Need to get correct rate of SM
- Can search for deviant shape indicating a specific signal
 - Need to get correct shape of SM
- Can verify analysis tools used for searches

$$WZ \rightarrow IIIV$$
 $ZY \rightarrow VYY$ $WW \rightarrow IVjj$ $WZ \rightarrow IVbb$ $ZY \rightarrow \mu\mu\gamma$ YY 11

Search for WW/WZ → Ivjj

- First observation in 2009
- Background for powerful WH →Ivjj Higgs search channel
- Analysis uses likelihood fit of matrix element differential probabilities

Allows precise test of analysis tools used in Higgs analyses

 $\sigma(WW+WZ) = 16.5^{+3.3}_{-3.0} \text{ pb}$

NLO theory: 15.1 ± 0.8 pb

Some Other Backgrounds to New Physics

700

Sytematic uncertainties 600 NLO MCFM CTEQ6.1M $\mathbf{d}\sigma/\mathbf{d}|\mathbf{y}|^{\mathrm{jet}}$ Corrected to hadron level $\mu_0^2 = M_Z^2 + p_T^2(Z), R_{sep} = 1.3$ $\mu = 2\mu_0$; $\mu = \mu_0/2$ ---- PDF uncertainties 400 300 $\mathbf{Z}/\gamma^*(\rightarrow \mu^+\mu^-) + \geq 2$ jets inclusive $p_T^{jet} \ge 30 \text{ GeV/c}, |Y^{jet}| \le 2.1$ 200 1.4 Data / Theory 1.2 1.4 1.6

CDF Run II Preliminary

CDF Data L = 2.37 fb⁻¹

Diphoton differential x-section

Background to Higgs,

gravitons, SUSY

Z+jets differential x-sections
Background to Z+Higgs, MET
+jets SUSY searches

Other ways to test for new phenomena

Rare decays

B_s → Φμμ 1st observation: FCNC's from BSM physics can enhance rate

Copious decays

Hyperon differential cross-section: Strange baryons like Ω -(sss) can be enhanced if Quark-gluon plasma

Are there unexpected CP violation sources?

β_s CP violating Phase

- CP violation in B_d system well studied
- But CP violation in B_s recent development
- $B_s^0 \rightarrow J/\Psi \Phi$ decays
 - SM predicts small CP violating phase β_s
 - Deviation could indicate New Physics
- Previous CDF analyses indicated ~1.5 σ discrepancy with SM
- New result 2 times data and new particle ID tools
 - Result more consistent with SM
 - But also, more consistent with New Physics

Is the top quark special?

- Top quark is the heaviest known particle
 - Perhaps involved in electroweak symmetry breaking
- Production and decay test high energy QCD and EWK forces
- Precise top mass constrains Higgs boson mass

Top quark mass

- New CDF 5.6 fb⁻¹ top mass measurement
- $M_t = 173.0 \pm 1.2 \text{ GeV}$ (0.7% uncertainty!)
- Individual measurement more precise than 2009 world top mass average

 New CDF 2010 top mass combination ~ 0.65%

Top mass precision can probe new physics

- Mass difference between top quark and anti-top quark?
 - Test of CPT conservation in top quark sector
- Measured difference
 - $\Delta m_T = 3.3 \pm 1.4_{stat} + 1.0_{sys} \text{ GeV}$ P-Value = 6%

Is the top quark special?

Top Width < 7.5 GeV @ 95% CL

Spin correlations of top-antitop

Top charge Q = 4/3 excluded @ 95% CL

W helicity: SM $f_0 = 0.7$ Measured 0.88 \pm 0.11 \pm 0.06

W helicity: SM $f_0 = 0.7$ X-section tt dilepton mode:

 $\sigma_{tt} = 0.7_{stat} + 0.5_{sys} + 0.4_{lum} \text{ pb}$

 $V_{tb} = 0.88 \pm 0.07 \text{ pb} \text{ (CDF+D0)}$

New particles beyond SM?

Extra-dimensions

SUSY

Dark Matter

New particle searches with top quark

NMSSM $t \rightarrow H^+b \rightarrow W^+Ab$

- Next-to-Minimal MSSM predicts intermediate Higgs boson state
 - Leads to Extra taus in tt final state
 - Search for extra tracks from tau decay
- First limits set on previously unprobed physics model

t prime quark

- 4th Generation of up-type quark decays like top quark
 - Some excess in tails
 - Exclude m_t up to 335 GeV

Search for squarks and gluinos

- SUSY Shottom quark decays to b quark and neutralino (dark matter candidate)
 - Gluon fusion and quark annihilation production of SUSY particles means high rate!
 - Signature is two b-jets + MET

Sbottom masses excluded up to 230 GeV for neutralinos 40 - 80 GeV

Graviton search X → γγ

- TeV scale of electroweak phenomena determined by Planck scale through warped extra dimension
- Theoretically favored region when curvature of dimension is between 0.01 and 0.1 * Planck Scale

Graviton can be observed at TeV scale!

Result: RS Graviton excluded from 472 GeV to 976 GeV for favored region

Most significant excess 200 GeV : P-value of 1.3% Not significant when trials factor applied

Z Prime Search

- Matrix element technique to probe Z→µµ final state
 - Angular information in addition to just M_{μμ}: 20% gain
- Most significant deviation at 200 GeV P-value = 1.6%
- Z' excluded up to 1071 GeV!
 - ATLAS projects 200 pb⁻¹ at 7 TeV to achieve similar sensitivity

Search for Higgs with 4 quark generations

 4th quark generation popular theory to resolve SM discrepancies and produce new CP violation sources that could explain matter antimatter asymmetry of universe

Analysis:

- gg→H production enhanced if new 4th generation quarks more massive than top
- Use existing H→WW analysis framework

Excess could signal both evidence for Higgs boson, and evidence for 4th generation of quarks

CDF + D0 combination :
$$131 < m_H < 204$$
 GeV excluded

Search for Supersymmetric Higgs boson

- MSSM Higgs 3b search (Φ+b→ bb + b)
 - Complements MSSM H → TT search
 - Relies on CDF's trigger-level b-tagging used in b physics
 - New version of analysis 2x more acceptance

m_H = 140 GeV most significant excess P-value = 0.9% (5.7%

with trials factor)

Is there a SM Higgs boson?

Higgs boson production and decay at the Tevatron

$H \rightarrow \gamma \gamma$

- New channel for 2010 ICHEP Higgs combination
 - Branching ratio small (0.2%) but excellent photon energy resolution

- $M_{yy} \sim 3 \text{ GeV}$
- Compare to 20 GeV for Mbb

ZH → track+track+bb

- New "channel" for 2010 ICHEP Higgs combination
 - Previously un-selected Higgs boson candidates in pp→Z*→ ZH
 - Recaptured ZH→µµ+bb candidates
 - Both muons fail loose muon ID
 - Captured on MET triggers as tracks with some parameters consistent with muons
 Neural Network selection removes fake leptons

- Black shape = ~1300 real Z's on top 3000 fake Z's
 - Want to extract the real Z's.
 - Can't handle large non-Z background
- Red shape = Neural Network muon selection removes non-Z fakes
- Blue shape = Nice Z peak used to search for Higgs

New High mass search ready for ICHEP

- 5.9 fb⁻¹ analysis with many improvements
 - Achieves single experiment expected exclusion
 - Observed limit slightly higher 1.08*SM @ 165 GeV

CDF Combined Higgs search

CDF combination from November 2009

Above does not include 4 new decay modes

New combination for ICHEP coming

Combined CDF & D0

New combination for ICHEP

coming

Systematic uncertainties correlated between experiments

Upper limit 2.7*SM (1 σ excess) Expected limit 1.8*SM

 $163 \text{ GeV} < m_H < 166 \text{ GeV}$ is excluded at 95% CL!

(Expected exclusion: 159 - 168 GeV)

Past + Projections

- Steady improvements since 2004
 - Scale better than 1/sqrt(L) curves shown below

Plan to achieve low mass target sensitivity underway:

• Based on extra channels, secondary triggers, lepton ID efficiency improvements, new b-tagging algorithms, and improved background discrimination

Approaching target sensitivity

Prospects for Higgs evidence

~15 fb⁻¹:

> 3 σ expected sensitivity from 100 – 180 GeV 4 σ @ 115 GeV 6 σ @ 165 GeV

End of 2011:

> 2.4 σ expected sensitivity across mass range

CDF's analysis plan for beyond 2011

Final Run II analysis plan

- Aim to publish results using full Run 2 dataset no later than FY13
 - Detailed plan exists that covers "core" analyses
 - If we accomplish core, have tools to accomplish any analysis
 - Core requires 60 FTE, CDF currently estimates 120 (stud+pdoc) FTE in FY11-12
- To accomplish this plan we
 - Will maintain computing architecture and storage for 5 years after Run 2 ends
 - Benefit since vast majority of CDF analyses proceed from common ntuples so that tools can be readilty passed along to new students/pdocs
- Constraints
 - G&V and Computing budgets decreasing in FY11 and (significantly) in FY12
 - Will impact scientific effort, CPU, and storage resources available for analysis
 - Collectively will impact the speed with which these analyses can be accomplished
 - Current scenarios may eliminate possibility of reprocessing data set to take advantage of improvements in tracking and b-tagging algorithms
 - Working with the lab to try and mitigate these effects

Tevatron "Core Physics Program"

- Measurement of sin(2β_s); (8 FTE)
- Limit on the branching ratio of process Bs→ µ+µ-; (3 FTE)
- High precision measurement of W boson mass; (4 FTE)
- High precision measurement of top quark mass; (3 FTE)
- Measurement of single top production cross-section; (2 FTE)
- Higgs boson searches both in SM and SUSY scenarios; (25 FTE)
- SUSY searches in "golden" mode Gaugino-neutralino with trileptons; (3 FTE)
- SUSY searches in "golden" mode Squark-gluino with multijets plus missing transverse energy; (3 FTE)
- Searches for high mass resonances in the e+e-, μ+μ-, γγ and jet-jet invariant mass spectra (sensitive to Large Extra dimensions, Z' and other processes not present in the Standard Model); (6 FTE)

CDF analysis limitations

CDF analysis limitations

- Majority of our analyses are statistically limited
 - Not difficult precision measurements
- Can be improved by :
 - Additional data
 - Improved analysis techniques
- Same profile for Core analyses

Fermilab scientific staff on CDF

- Fermilab is 15% of CDF author list
- Leadership
 - Spokesperson : Rob Roser
 - Higgs Physics Conveners: BJK and Eric James
 - QCD Physics Convener : Sasha Pronko
 - B Physics Convener : Diego Tonelli
 - Offline heads: Rick Snider and now Ray Culbertson
 - Operations head : Phil Schlabach
- Physics output
 - Fermilab staff primary authors on 52% of 75 new physics results

Conclusions

- CDF is asking many of the most important questions of particle physics
 - Getting answers which propel the field
 - Powerhouse of results in recent years
 - Possible hints to non-SM physics could get more exciting
- Higgs effort stronger than ever
- Collaboration is smaller, but output is high
 - # papers 2009 + 2010 = 2005 + 2006 + 2007 + 2008
- Expect to be competitive with LHC for several years after running
 - Plan for publishing core results within two years

Backups

CDF

- Need large dataset
 - Tevatron has delivered 9 fb-1
 - 6 fb⁻¹ data up to March 2010 shown today
- Need excellent detector
 - Silicon tracker (SVX)
 - $|\eta|$ < 2, 90 cm long, r_{L00} = 1.3 1.6 cm
 - Drift Chamber (COT) EXCELLENT TRACKING
 - 96 layers, between 44 and 132 cm
 - Muon coverage
 - $|\eta| < 1.5$

TRIGGERED TO 1.5 GeV/c

- outer chambers high purity muons
- <u>Electron</u>, general calorimeter
 - $|\eta| < 2.8, 3.5$
- Triggers

CAN FIND LEPTONS IN COVERAGE GAPS

e, μ, τ, 2nd Vtx, MET, jets

GLOBAL TRACKING, CALORIMETER & B-HADRON
ID AT HARDWARE TRIGGER LEVEL

